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A collection of beautiful proafs.

This chapter contains a compilation of beasutiful proofs, . proofs of
which I expect that all mathematicians will agree that they are beautiful.
The purpose of this compilation is to collect the material that may enable
Us to come to grips with the main qualities that together constitute
"mathematical elegance". Further analysis and :omparisons of these gems
©ill be postponed until the collection is thought to be large enough. In
order to avoid too much of a personal bias (and, also, to build up a larger
collection than I could think of myself) I have asked others for their con-
tribution to the collection. The only constraint was that the oraof could
be appreciated by the "generally educated"; all contributions that required

specialized mathematical knowledge had, alas, to be rejected.

1. A classical example.

In the late 18th century a German schoolmaster gave --with the intention |
of keeping his pupils busy for another hour-- the task %o sum hundred terms
cf an arithmetic progression to a class of little boys who, of course, had
never heard of arithmetic progressions. The yuungest pupil, however, wrote
cown the answer instantaneously and waited gloriously, with his arms folded,
Tor the next hour while his claésmates toiled: at the end it turned out

that little Johann Friederich Carl Gauss had been the cnly one to hand in
the correct answer. Young Gauss had seen instantaneously how to sum such a
series analytically: the sum equals the number of terms multiplied by the
average of the first and the last term. (To quote E.7.Bell: "The problem

was of the following sort, 81297 + 81495 + 81693 + ... + 100899, where

the step from one number to the next is the same all along (hare 198), and

a given number of terms (here 100) are to be added.")

In two respects this is a classical example: firstly young Gauss
produced his answer about a thousand times as fast as his classmates, secondly
he was the only one to produce the correct answer. So much for the effective

ordering of one's thoughts!

2. The Pvthaqmrean Thearem, proof I.

When 1 was twelve years old, I learned the following proof, in which
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a square with sides a + b is considered in twe different ways.

a b b a
2
ab b b a b
32 ab a
b a
a b a b
a® + b° + 2ab - e 4 4ab/2

The two expressions are different expression for the same area: they are
therefore equal. Next we observe Zab = 4sb/2 and by subtraction we find
a2 + b2 = c2. A beautiful proof in the good old Greek tradition that
fascinated me when it was shown to me, and satisfied me for mors than 30

Years.

3. The Pythagorean Theorem, proof IT.

The following proof was shown to me a few years ago. The areas of
similar figures have the same relation as the squares of corresponding
lines; for three similar figures with areas A, B, and C respectively and
corresponding lines a, b, and c xrespectively, any homogeneous linear
relation satisfied by A, B, and C is, therefore, also satisfied by

2

2
a, b, and ¢, and vice versa. In particular we know that A + B =C

implies ae + b2 = c2

Here we have three similar triangles with a, b, and ¢ respectively as

their hypotenuse; the sum of the areas of the first two equals the area of

. 2 2 2
third triangle, i.e. A + B =, hencea +b ==¢
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4. The Theorem of Pompeiu.

For a triangle ABC of which at least two sides have difrerent lengths,

we can chom;e a point P such that the lengths AP , BP y and CF are such

that no triangle can be formed from those three pieces.
C

A B
In any triangle, esach side must be smaller than the sum of the two o*hers.
But, if AC > BC , we can choose P so close to C , that AP > 2P + CP,

hence they can not be the lengths of the sides of a triangle.

This observation led the Rumsnian mathematician Fompeiu tc the con-
jecture that, conversely, for a equilateral triangle ABC no such point
exists, i.e. that for every point P the lengths AP, BP, and [P satisfy
the triangular inequalitias.rHa gave a proof, which --I am told-- was very
ugly. The following beautiful proof is due ta G.R.Veldkamp; it gives a
constructive existence proof of such a triangle with sides equal to AP,

BP, and CP respectively.

A B = A1

We rotate triangle CAP around point C over 60 degrees, so that A' coincides
with B and P gives rise 4o its co¥respdnding point P' . The process of
rotation implies that AP = BF! and CP = CP'. But now triangle PCP' is an
isosceles triangle with at point C a top of 60 degrees, hence it is
equilateral, and we conclude that CP = PP!. Triangle PBP' has three sides

of the required lengths and the Theorem of Pompeiu has been proved.
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5. Fueclid's Thearem on Primes.

Denoting the integer numbers > 2 by the term "multiples", we can czfine .
the primes as those multiples that cannot be written as the product of {wo
multiples. From this definition it follows immediately that for each muliiple

there exists at least one prime dividing that multiple,

let P be a prime; define the wmultiple 0Q as the product of all
primes <P , increased by 1. The multiple Q has been constructed in such
a way, that none of the primes <P devides Q ; the prime dividing O must,

therefors, be > P . Hence there is no largest prime number.

Note. It is not unusual that, after the construction of 0, the proof considers
the two cases "U is a prime" and "0 is not a prime" separately. The above proof
shaws that this case analysis is superfluous; the case analysis has probably
been induced by the linguistic distinction between singular and‘plural forms.

(End of note.)

6. Fuclid's Theorem on the Base Angles of an Isosceles Triangle,

Using the theorem that any two triangles which have two sides and
the included angle equal to two sides and the included angle of the other
are congruernt, it should be proved fhat the base angles of an isosceles
triungle are equal, more precisely, that from AC = BC follows that the

angles A and B are equal to esach other.

A B

Because AC = BC, we have also LB = CA; angle C is equal ta itself and the
theorems alows us to conclude that the triangles ACB and BCA are congruent.

These two triangles have angles A and B as correspanding parts, heace they

are equal.

Note.It is not necessary --as Euclid seems to have done-- to bisect angle C
and then to use the theorem to show that the original trangle is cut into

two congruent parts.(End of nute.)
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7. A covering problem.

Given the figure as shown below that could be covered by 138 scguares,

' - -
and 69 dominoes of two squares each --one such domino is shown below——
‘ L

. ; ]

domino

1

the question to be answered is: can the figure be covered by the 69 dsminoeg?

The answer is negative, and the argument is as follows.

Consider the 10*14 rectangle before the two opposite squares hesve
been removed, and colour its'squares alternatingly black and white as with
a chess board: the rectangle then shows 70 white squares and TO black anes.
The twoc squares to be removed have, howsver, the same colour, and our figure,
therefare, has 70 sguares of the nﬁe colour and 68 squares of the othzr
colour. Each domino covers one white and one black square; together tﬁa
dominoes cover, no matter how they are placed,f69 black and 69 white squares,

As a result they cannct cover the given figure.

8. The Harmonic Series Diverges.

Consider
s, =1/1+1/2+41/3+1/a +1/5 +1/6 +1/T+ /8 + ... 4+ 1/n.

It has to be shown, that by‘choosing n sufficiently large, we can achieve

S > M for arbitrarily large value M; in other words we have to show that
n

the sequence 51, 52, 53, ... is unbounded. We observe that

S, - 5 = 1/2

54 - 52 =1/3 +1/4 > 1/4 + 1/4 = 1/2

58 -54=1/5+1/6+1/7T+1/8>1/8+1/8+1/8+1/8 =1/2 etc.

In other words: starting with n =1, 5n is increased by at least 1/2

each time n is doubled.
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9. The Eigenvalues of a Hermitean Matrix are Real.

A Hermitean matrix is the generalization of a re=l, symmetric matrix;
its transpose equals its complex conjugate
*
Al = a (1)
For a given matrix A , lambda is an eigenvalue, if and only if +he eguation

A.x = lambda.x (2)

has a non-null vector x as solutian.

Taking the transpaose of both sides of (2) we get
xT.AT = lambda.xT
*
and then post-multiplying both sides by x we get
* ¥
xT.AT.x = lamhda. xT.x R (3)
Taking the complex conjugate of both sides of (2) we get
* % * %
A .x = lambda .x
. . . T
and then pre-multiplying both sides by x we get
T * =% ¥ T %
X +A .x = lambda .x .x . (4)
On account of (1) we conclude that (3) and (4) have equal left-hand

*

i *
sides, and hence 0 = {lambda - lambda ).xT.x .

, T * -
Because x is @ non-null vector and x .x is a sum of absolute valuss,

: *
we conclude that xT‘x >0 , and hence

*
lambda = lamhbda . Q.€.0.

10. The Cauchy-~Schwarz ineguality.

Let Brreees @ and b1,..., bn be 2n real numbers; then the

following inequality holds:

2 2 2 2 2
(a1b1 FR anbn);g (a1 toot e )(b1 teost b )

Consider the following quadratic form ‘Q(x) in x , defired by

2
o(x) = (a1 + b1x)2+...+ (an + hnx) .




Because, for real x, Q(x) is defined as the sum of the squares of n
real numbers, for real x the inequality Q(x) =20 must hold. In exher
words, the equation Q(x) = 0 has at most cne real.root, and its discriminant
is <0 . Collecting powers of x in the definition of - Q(x) we fing:

2

2 2 2 2
(x) = (a1 oot @ )+ 2(a1b1 oot anbn).x + (b1 Fooak b ).x

‘with the discriminant

2 2 2 2 2
(a1b1 4ot anbn) - (a1 oot a )(b1 Fooit b )

The conclusion that this discriminant is nonpositive proves our inequality

11. Reconstfuctinq an odd solygon from the midpoints of its sides.

We shall show the consiruction for poly = §

.

For the pentagon ABCDE , the points marked AB, BC, CD, DE, and EA res-
pectively are the midpoints of its successive sides. Given the positions of

those five midpoints, it is requested to reconstruct the nriginal pentagon

ABCDE.

Consider what happens when we subject a plane to five successive
rotations of 180 degrees each with AHB, BC, CD, DE, and EA as the successive
centers of rotation. The point that originally coincided with A , coincides
with B after the first rotation, with € after the second rotation, eic.

and coincides again with A after the fifth and last rotation. Because the
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pentagon has an odd number of sides, the total transformation of that piane

is therefore a rotation of 180 degrees with A as its center of rotaticn.

We now trace a point in the rotated plane that originally coincizes
with an arbitrary point X0 . Rotating it around AB gives us i%s pasition
X1 after the first rotation, rotating that around BL gives us its =-csition
X2 after the second rotation, etc. until we have constructed its finmal
position X5 . As that could also have been reachead by rotating X0 cver
180 degrees around the --still unknown—- point A , we conclude that A
is the midpoint of the line from X0 to X5 ! The pasitions of ihe sther

four vertices B, C, D, and E now follow trivially.

12. The number of factars p (for o prime) in no!

tet n be a natural number, let p be a prime nunber; let s(n, p)
denote the sum of the digits of the representation of n in the number
system with radix p . Then the number of factors P in n! eqguals

n —.s(n, p) (‘)

_""}TTT"T_""
Expression (1) is clesrly ﬁorrect for n =1 . Its general validity is
proved by mathematical induction. Suppose that n + t has k factors p ;
the transition from n! to (n + 1)! then increases that number of factors
P by k . But replacing n by n + 1 also in:reases {1} by k , beczuse
when 1 is added to n , the carry is propagated over k digits =p - 1,

which all turn into zero.

13. Frank Morley's Theorem.
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In 1904 Frank Morley discovered the following theorem --see previous picture—-:

The adjacent pairs of the trisectors of the angles of a triangle always

meet at the vertices of an equilateral triangle.

The shortest proof I knew for this theorem proves, in fact, a stronger thecrem,

that also determines the orientation of that equilateral triangle. We start

in our procf not with the arbitrary triangle, but with the equilateral one.

Choose the three positive sngles *, 8, and ¥ such that o +B+y = 60°.

lraw an eguilateral triangie XYZ and comstruct the triangles AXY =n2 3XZ.

with the angles as indicated in the above picture. Because £AXE = 180°-{x +B Y,

it follows that if «BAX =X+¢ , ABX =p-@ . Using the rule of sines hree

times (in triangles AX3 , BXZ , and AXY ), we deduce
sin(a + ) BX  XZ.sin(60°+Y)/sin(B) sinfx)
sin(g‘a ‘(P) B Ax XY.sin(60°+X)/sin(u) B sin(?n)

Because in the range considered the left-hand side of this equation is a

monotonieally inereasing fuaction of cp y we conclude that q) =0 is in this
range its only root. Compisting the picture and repeating the argument twice
we conclude that the angles at A, B, and C are trisected, and thus Morley's

Theorem is proved without the aid of any additional lines,

(TD be continued in & later report.)




