TinyPhoto is a small rotating photobook embedded graphics project that uses the low-power ATtiny85 microcontroller (3mA) and a 128×64 pixel OLED display (c.5-10mA typical, 15mA max). This combination can deliver at least 20 hrs of continuous play on a 3V coin cell battery (225mAh capacity). TinyPhoto can be readily built from a handful of through-hole electronic components (12 parts, £5) organized to fit onto a 3cm x 7cm single-sided prototype PCB. The embedded software is c.150 lines of C code and uses less than 1,300 bytes of on-chip memory. TinyPhoto rotates through five user-selectable images using a total of 4,900 bytes (yes, bytes!) stored in the on-chip flash RAM. The setup produces crisp photos on the OLED display with a real-time display rate that is instantaneous to the human eye with the Tiny85 boosted to run at 8MHz. A custom device driver (200 bytes) sets up the OLED screen and enables pixel-by-pixel display. Custom Forth code converts a 0-1 color depth image into a byte-stream that can be written to the onboard flash for rapid display. It is a reminder of what can be accomplished with low-fat computing…
The magic, of course, is in the software. This article describes how this was done, and the software that enables it. Checkout the TinyPhoto review on Hackaday!
Tiny Photo – 3cm x 7cm photo viewer powered by ATTiny85 8-bit microcontroller sending pixel level image data to OLED display (128×64 pixels), powered by 3V coin cell battery. Cycles through 5 images stored in 5kB of on-chip Flash RAM. (Note, this is 1 million times less memory than on a Windows PC with 8GB RAM). The magic is in the software.
Continue reading this article…
This article explains how to use the Arduino toolchain to program microcontrollers from the Arduino IDE using their bootloaders, and also burning bootloaders directly onto bare microcontroller chips. It covers developing interactively with Forth (rapid prototyping), and moving your creations from a development board (Nano, Uno) to a standalone, low-cost, low-power, small footprint chip such as the ATMega328P or ATTiny85 or ATTiny84. Each of these microcontrollers is powerful, inexpensive, and allows using 3V batteries directly without the need to boost voltage to 5V. Additionally, we describe how to build an inexpensive (under £5), standalone 3-chip Atmel AVR universal bootloading programmer that you can use to program all of the chips above.
Continue reading this article…
Rapid prototyping can be an accelerator for hardware or embedded solutions. But for a successful outcome, follow the recommended checklist / task sequence given below, as all of these steps will likely need to be touched upon at some point in the process.
Continue reading this article…
By Assad Ebrahim, on May 20th, 2010 (14,356 views) |
Topic: Maths--Tools, SWEng--Toolbox
(Mathematical Toolset Series: TeX & LaTeX, Part 3 of 3)
If you write frequently, it is likely that you have certain stock or administrative material that is included in each of your documents. You also likely spend a substantial portion of your overall effort re-writing, editing, or re-arranging material. In this situation, one of the best ways of preserving your time and your sanity is to adopt a modular approach to document development.
In this final article of the three part series on LaTeX / TeX, I will discuss a modular approach to document preparation using TeX. I’ll also provide modular templates that should make your use of TeX more efficient.
By Assad Ebrahim, on March 5th, 2010 (16,732 views) |
Topic: Technology
“Smart dust”, tiny leaf sensors, wearable computing — these and a host of other sensors that make measurements and communicate without requiring human intervention can now be readily integrated into dispersed systems to provide ambient intelligence, situational awareness, and the capability for adaptive behaviors or intelligent process automation.
Whether the sensor’s output is used to control the opening and closing of relays or thermostats, or to automatically raise alerts — the integration of sensors into systems is at the heart of the promise of ubiquitous computing. With the ability to place hundreds of embedded sensors within a given coverage area, each wirelessly streaming information, the possibility of self-organizing sensor networks is increasingly becoming a reality.
This article takes a look at the sensor layer of a basic ubiquitous computing stack.
Continue reading this article…
|
Stats: 1,089,379 article views since 2010 (Aug '24 update)
Dear Readers: Welcome to the conversation! We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics. Notifications for new long-form articles are through the feeds (you can join below). We love hearing from you. Feel free to leave your thoughts in comments, or use the contact information to reach us!
|