The Sacred & the Profane: the search for simplicity in the total hardware-software combination


If you haven’t done so already, you may want to start by reading the Preface to Knowledge Engineering & Emerging Technologies.


January 31st, 2024 (4th ed)1

The aim of this article is to encourage you to take an end-to-end perspective in your designs, seeking to minimize the overall complexity of your system, of the hardware-software-user combination. To achieve this, it is helpful to understand how computing, and within that, how the notions of the sacred and the profane have evolved over the past 60 or so years.2

The following remarks set out a ‘true north’ perspective for this conversation:

  1. “We are reaching the stage of development where each new generation of participants is unaware both of their overall technological ancestry and the history of the development of their speciality, and have no past to build upon.” – J.A.N. Lee, [Lee, 1996, p.54].
  2. “Any [one] can make things bigger, more complex. It takes a touch of genius, and a lot of courage, to move in the opposite direction.” – Ernst F. Schumacher, 1973, from “Small is Beautiful: A Study of Economics As If People Mattered”.3
  3. “The goal [is] simple: to minimize the complexity of the hardware-software combination. [Apart from] some lip service perhaps, no-one is trying to minimize the complexity of anything and that is of great concern to me.” – Chuck Moore, [Moore, 1999] (For a succinct introduction to Chuck Moore’s minimalism, see Less is Moore by Sam Gentle, [Gentle, 2015]
  4. “The arc of change is long, but it bends towards simplicity”, paraphrasing Martin Luther King.4

The discussion requires a familiarity with lower-level computing, i.e. computing that is close to the underlying hardware. If you already have some familiarity with this, you can jump straight in to section 2. For all backgrounds, the discussions in the Interlude (section 4) make for especially enlightening reading. Whether you find yourself in violent agreement or disagreement, your perspective is welcomed in the comments!

Between complexity and simplicity, progress, and new layers of abstraction.

Continue reading this article…

  1. 3rd ed. (Jul 20, 2021), 2nd ed. (Apr 9, 2014, addition of GCC history), 1st ed. (May 2, 2010)
  2. * Sacred: Worthy of respect or dedication. Devoted to a single purpose. Profane: Violating the sacred character of a place or language. Irreverent toward what is held to be sacred.
  3. This quote by Ernst F. Schumacher is often incorrectly attributed to Einstein
  4. Martin Luther King’s actual phrase was “The arc of the moral universe is long, but it bends towards justice.”, 1965 You can see an example of this in Ian Hogarth’s discussion about the contest between tokamak and stellerator in the evolution of nuclear fusion technology. (Short version: the tomkamak surged ahead despite its complexity to operate as it was easy to design, but the real breakthrough will likely be achieved by the stellerator as it is simple to operate though harder to design.)

The Mathematics of Uruk and Susa (c.3500-3000 BCE)

This is Part 2 in the Ancient Mathematics series. (Part 1: The Prehistoric Origins of Mathematics, Part 3: Exploring Cuneiform Culture 8500-2500 BCE)

Summary The written mathematics of ancient Iraq and Iran (Mesopotamia, Khuzistan) developed out of an administrative/bureaucratic program to control the surplus raw and manufactured goods of the settled societies of the late neolithic/early bronze age: grains & grain products, sheep & other herded animals, jugs of dairy fats & beer, rope & textiles. It evolved through a sequence of literary and mathematical innovations, each making more efficient the ability to record quantitative/metrological information and use it for planning and control. Initially, impressed tokens and pictographs were used whose meaning was clear by association. Subsequently, this repertoire was written signs was expanded in a consious effort to provide a standard, all-encompassing collection of signs/symbols (ideographs/logograms) that could represent all aspects of importance in early thought (professions, animals, foods, containers, textiles, etc.). The standard sign lists were spread through scribal schools to produce the scribes that administered the temple economies of the early city-states.

Uruk was the hegemonic centre of this innovation in mathematics and writing, starting from 3500 BCE. The increased administrative control generated economic efficiencies accelerating Uruk’s growth and which supported greater military effectiveness and the ability to dominate neighboring polities and support longer distance trading missions [Adams/2005], [Algaze/2013]. The success of Uruk’s structures had the effect of radiating the new inventions outward throughout the Greater Mesopotamian region (evidence in Aratta/Susa adoption of writing/adminstrative control), even reaching Anatolia (Turkey) in the far north (Uruk expansion phenomenon).

The gains in economic power and increased resilience to subsistence unpredictability conferred by the new planning and control capabilities, set in motion the development of a bureaucratic administrative culture in the southern Mesopotamian city states that, over the next 1000 years would reach its hypertrophic apex in the ambitious Ur III program under King Shulgi to plan, manage, and control all economic/productive assets in his vast empire through mathematics (c.2050 BCE). This required an army of scribes which in turn led to the standardization and systematization of the scribal school institution responsible for producing them.

Two examples of mathematical innovation are from the cattle redistribution center Puzrish-Dagan outside Nippur during the Ur III empire. One shows perfection of the form of tabular accounting (world’s earliest normalized two-dimensional table with rows and columns and sums in both dimensions) [Robson/2003]. The other shows the population growth modeling of a cattle-herd over 10 years with projected economic yields in dairy and cheese, solving, in modern terms, population difference equations in table form (see illustrated explanation of cuneiform tablet TCL 2, no.5499, [Nissen/1993: 97-102])

In this paper, we will look in more detail at mathematical development during the archaic period of writing (3500-3000 BCE) which gave rise to a new literate and quantitative layer in society in the main urban centres of Mesopotamia. Our thesis (which we have seen play out already in Part 1) is that technology (in this case mathematics/writing) and culture (in this case the impulse to plan/control) are inextricably linked. Their development influences the trajectory of the surrounding societies.1

Ur III mathematical model projecting annual dairy/cheese yields from a herd of 4 cows and a bull with assumptions on calving rates

Download article (PDF)

Continue reading this article…

  1. Also linked, but out of scope for this paper, is the impact of institutional values in enhancing/suppressing innovation. Laws limiting exploitation by the powerful were put in place by Sargon of Akkad, Gudea and Entemena of Lagash, and Hammurapi of Babylon. The military policies of King Shulgi of Ur III stimulated massive state investment, drove institutional innovation but suppressed individual innovation. In the freedoms of the Old Babylonian period we see indiviual innovation thrive. See (Hoyrup/1991) and (Hoyrup/2009: 31-32) for a survey and further reading.

The Mathematics of Duelling

Duelling with pistols. If you were the one issuing the challenge, your dilemma was that custom dictated that your adversary be allowed to shoot first. Only then, if you were still able to shoot, would you be permitted to seek “satisfaction”.

How much of an advantage does the first shooter really have? In this article, we build a simple probability model, and implement a numerical model in a few lines of R code.

Two gentleman face off in the snow.  Convention dictates the challenged shoots first.

Two gentleman face off in the snow. Convention dictates the challenged shoots first.

Continue reading this article…

Stats: 1,066,417 article views since 2010 (March update)

Dear Readers:

Welcome to the conversation!  We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics.   Notifications for new long-form articles are through the feeds (you can join below).  We love hearing from you.  Feel free to leave your thoughts in comments, or use the contact information to reach us!

Reading List…

Looking for the best long-form articles on this site? Below is a curated list by the main topics covered.

Mathematics-History & Philosophy

  1. What is Mathematics?
  2. Prehistoric Origins of Mathematics
  3. The Mathematics of Uruk & Susa (3500-3000 BCE)
  4. How Algebra Became Abstract: George Peacock & the Birth of Modern Algebra (England, 1830)
  5. The Rise of Mathematical Logic: from Laws of Thoughts to Foundations for Mathematics
  6. Mathematical Finance and The Rise of the Modern Financial Marketplace
  7. A Course in the Philosophy and Foundations of Mathematics
  8. The Development of Mathematics
  9. Catalysts in the Development of Mathematics
  10. Characteristics of Modern Mathematics

Electronic & Software Engineering

  1. Electronics in the Junior School - Gateway to Technology
  2. Coding for Pre-Schoolers - A Turtle Logo in Forth
  3. Experimenting with Microcontrollers - an Arduino development kit for under £12
  4. Making Sensors Talk for under £5, and Voice Controlled Hardware
  5. Computer Programming: A brief survey from the 1940s to the present
  6. Forth, Lisp, & Ruby: languages that make it easy to write your own domain specific language (DSL)
  7. Programming Microcontrollers: Low Power, Small Footprints & Fast Prototypes
  8. Building a 13-key pure analog electronic piano.
  9. TinyPhoto: Embedded Graphics and Low-Fat Computing
  10. Computing / Software Toolkits
  11. Assembly Language programming (Part 1 | Part 2 | Part 3)
  12. Bare Bones Programming: The C Language

Pure & Applied Mathematics

  1. Fuzzy Classifiers & Quantile Statistics Techniques in Continuous Data Monitoring
  2. LOGIC in a Nutshell: Theory & Applications (including a FORTH simulator and digital circuit design)
  3. Finite Summation of Integer Powers: (Part 1 | Part 2 | Part 3)
  4. The Mathematics of Duelling
  5. A Radar Tracking Approach to Data Mining
  6. Analysis of Visitor Statistics: Data Mining in-the-Small
  7. Why Zero Raised to the Zero Power IS One

Technology: Sensors & Intelligent Systems

  1. Knowledge Engineering & the Emerging Technologies of the Next Decade
  2. Sensors and Systems
  3. Unmanned Autonomous Systems & Networks of Sensors
  4. The Advance of Marine Micro-ROVs

Math Education

  1. Teaching Enriched Mathematics, Part 1
  2. Teaching Enriched Mathematics, Part 2: Levelling Student Success Factors
  3. A Course in the Philosophy and Foundations of Mathematics
  4. Logic, Proof, and Professional Communication: five reflections
  5. Good mathematical technique and the case for mathematical insight

Explore…

Timeline