Sum of Integer Powers (Part 1)

2nd ed. January 21, 2018; 1st ed. Feb 8th, 2010

Abstract
This three part paper explores solving the sum of powers problem S_r(n) = \sum_{k=1}^{n} k^r using discrete maths techniques (recurrence relations, matrix systems) to obtain a solution polynomials whose coefficients turn out to be exactly the Bernoulli numbers B_n.
Part 1 (this paper) solves the problem using recurrence relations in a way which a high school student could emulate for small r. In Part 2, we develop a general recursive solution that works for arbitrary r, from which we can build a table of values to assist in finding the coefficients of the solution polynomial, coefficients that are precisely the Bernoulli numbers discovered in 1713. In Part 3, we show how by transforming the problem into a linear system, we may obtain a direct (non-recursive) solution which directly calculates the Bernoulli number for any power r. Source code is provided for all solutions.

Readers who are interested in this topic are referred also to lovely paper by Bearden (March 1996, American Mathematical Monthly), which tells the mathematical story and fills in the history (thanks to a reader for this great reference).
Continue reading this article…

Sum of Integer Powers (Part 2)

(Discrete Mathematics Techniques II)

1st ed. Feb 8th, 2010

Abstract
We continue the 3-part paper exploring how one might solve for themselves the general case of the sum-of-integer-powers problem S_p(N) = \sum_{k=1}^{N} k^p for arbitrary p, the coefficients of whose solution are the famous Bernoulli numbers (1716). In this paper we show to how obtain a p-th order recurrence relation that can be used to iteratively obtain the closed form polynomial for S_p(N) for any given p. Source code is given for computing these polynomials using Maxima, an open-source (free) symbolic computation platform. Continue reading this article…

Sum of Integer Powers (Part 3)

(Discrete Mathematics Techniques III)

1st ed. Apr 2nd, 2010

Abstract
This is the last in the 3-part series of articles on finding for oneself the solution to the sum of integer power problem, and in the process discovering the Bernoulli numbers. In Part 3 (this paper), we find a direct closed-form solution, i.e. one that does not require iteration, for the general case of the finite-summation-of-integer-powers problem S_p(N) = \sum_{k=1}^{N} k^p. Having established in Part 2 that the closed-form solution is a polynomial, the summation is here rewritten as the sum of the p+1 independent monomials a_j N^j (1 \leq j \leq p+1), where the a_j are unknown coefficients. Using the recurrence relation S_p(N+1) = S_p(N) + (N+1)^p, we obtain a linear combination of the monomials, which reduces to an easily solvable (p+1)-by-(p+1) triangular linear system in the unknown coefficients a_j of the closed-form polynomial solution. Maxima and Octave/Matlab codes for directly computing the closed-form solutions are included in the Appendices.

A lovely paper by Bearden (March 1996, American Mathematical Monthly), which was shared with me by a reader, tells the mathematical story nicely, with much of the history filled in.

Continue reading this article…

The Mathematics of Duelling

Duelling with pistols. If you were the one issuing the challenge, your dilemma was that custom dictated that your adversary be allowed to shoot first. Only then, if you were still able to shoot, would you be permitted to seek “satisfaction”.

How much of an advantage does the first shooter really have? In this article, we build a simple probability model, and implement a numerical model in a few lines of R code.

Two gentleman face off in the snow.  Convention dictates the challenged shoots first.

Two gentleman face off in the snow. Convention dictates the challenged shoots first.

Continue reading this article…

The Place of Insight, Technique, and Computing in Mathematics

The mathematician Alfred North Whitehead1 observed that “[Advancement occurs] by extending the number of important operations which we can perform without thinking of them.” (Introduction to Mathematics, 1911 2) This is certainly true in mathematics where the development of judicious notation, accompanied by good mathematical technique, extends the capability to perform chains of complex reasoning accurately and efficiently. Through proper problem formulation (tractable yet generalizable), one can sometimes pass from a single insight to the solution of a family of problems, and in some cases, to the solution to the general question itself.3

Here, mathematical computing can provide a useful benefit: helping to efficiently explore conjectures, dispatch with false directions, and save time during the development, error-checking and validation stages of obtaining general results. In industry, where specific or semi-general results are needed fast, such tools allow rapidly working up the required material and providing the necessary certainty before the fully general results or complete proof are ready.

Continue reading this article…

  1. Whitehead was the major collaborator with Bertrand Russell in the strenuous 10 year attempt, ultimately unsuccessful, at driving through the logicist program in Mathematics, i.e. reducing the entire body of mathematics to a fixed system of logic. The program of logicial reductivism, of which this was perhaps the last major attempt, and certainly one of the best known and most influential, was put to rest by Godel’s discovery of the essential incompleteness of every sufficiently strong logical system (proved in his Incompleteness Theorem). In this, he establishes that any logical system sufficiently strong to obtain arithmetic will be able to generate statements that the system cannot prove.
  2. Whitehead claimed in the original that it is Civilization that advances in this way. I have reduced the claim for the purpose of this article.
  3. Fields Medalist Terence Tao has written a short piece that describes the role of rigor and the value of mathematical technique in the training of a mathematician. In the online discussion of this article, he adds two particularly interesting remarks: the first concerns the difference between the training pathways of physicists and engineers versus mathematicians that acknowledges that the final destination is the same, but the training route is different (pre-rigorous, post-rigrous). He then speculates on the observation that the two pathways are not the same, and that the order in which one traverses them influences the final outcome, and he makes the analogy with the order of learning languages.

Stats: 1,089,379 article views since 2010 (Aug '24 update)

Dear Readers:

Welcome to the conversation!  We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics.   Notifications for new long-form articles are through the feeds (you can join below).  We love hearing from you.  Feel free to leave your thoughts in comments, or use the contact information to reach us!

Reading List…

Looking for the best long-form articles on this site? Below is a curated list by the main topics covered.

Mathematics History & Philosophy

  1. What is Mathematics?
  2. Prehistoric Origins of Mathematics
  3. The Mathematics of Uruk & Susa (3500-3000 BCE)
  4. How Algebra Became Abstract: George Peacock & the Birth of Modern Algebra (England, 1830)
  5. The Rise of Mathematical Logic: from Laws of Thoughts to Foundations for Mathematics
  6. Mathematical Finance and The Rise of the Modern Financial Marketplace
  7. A Course in the Philosophy and Foundations of Mathematics
  8. The Development of Mathematics
  9. Catalysts in the Development of Mathematics
  10. Characteristics of Modern Mathematics

Topics in Mathematics: Pure & Applied Mathematics

  1. Fuzzy Classifiers & Quantile Statistics Techniques in Continuous Data Monitoring
  2. LOGIC in a Nutshell: Theory & Applications (including a FORTH simulator and digital circuit design)
  3. Finite Summation of Integer Powers: (Part 1 | Part 2 | Part 3)
  4. The Mathematics of Duelling
  5. A Radar Tracking Approach to Data Mining
  6. Analysis of Visitor Statistics: Data Mining in-the-Small
  7. Why Zero Raised to the Zero Power IS One

Technology: Electronics & Embedded Computing

  1. Electronics in the Junior School - Gateway to Technology
  2. Coding for Pre-Schoolers - A Turtle Logo in Forth
  3. Experimenting with Microcontrollers - an Arduino development kit for under £12
  4. Making Sensors Talk for under £5, and Voice Controlled Hardware
  5. Computer Programming: A brief survey from the 1940s to the present
  6. Forth, Lisp, & Ruby: languages that make it easy to write your own domain specific language (DSL)
  7. Programming Microcontrollers: Low Power, Small Footprints & Fast Prototypes
  8. Building a 13-key pure analog electronic piano.
  9. TinyPhoto: Embedded Graphics and Low-Fat Computing
  10. Computing / Software Toolkits
  11. Assembly Language programming (Part 1 | Part 2 | Part 3)
  12. Bare Bones Programming: The C Language

Technology: Sensors & Intelligent Systems

  1. Knowledge Engineering & the Emerging Technologies of the Next Decade
  2. Sensors and Systems
  3. Unmanned Autonomous Systems & Networks of Sensors
  4. The Advance of Marine Micro-ROVs

Maths Education

  1. Maxima: A Computer Algebra System for Advanced Mathematics & Physics
  2. Teaching Enriched Mathematics, Part 1
  3. Teaching Enriched Mathematics, Part 2: Levelling Student Success Factors
  4. A Course in the Philosophy and Foundations of Mathematics
  5. Logic, Proof, and Professional Communication: five reflections
  6. Good mathematical technique and the case for mathematical insight

Explore…

Timeline