Making Animation from Stills

Hi, my name is Jasmine, and I’m 7 years old. Today I made two animated movies, The Basket (1m 18s long) and Snowbell’s Accident (2m 23s long) (Nov 2nd, new with audio!) Enjoy!

I made these by taking still photographs of the action with my dad’s iPhone and then recording an audio soundtrack (for the second animation). My dad then assembled the stills into an animation and layered on the soundtrack (see below for how). I’m working to add music to it — check again soon!

The Basket (1m 18s long) (silent film)
The Pets find a cozy basket. But amidst all the hustle and bustle, will anyone be able to take a nap?

Continue reading this article…

A microcontroller development kit for under £10 (Arduino)

For under £10, you can put together a microcontroller development platform, ready to program directly from your PC over USB using free Arduino software. Once programmed, your microcontroller will run autonomously, untethered from your PC, powered by as small a battery power supply as a single 1.5V AAA or 3V CR2032 coin cell. You can have it interact with its environment using dozens of low-cost sensors and motors. Everything you need to explore the exciting world of embedded systems is available to you, typically for less than a day pass on the London underground.

An Arduino Nano microcontroller development kit for under £13

A homebrew Arduino Nano microcontroller development kit for under £12 (including optional OLED display)

Continue reading this article…

Building a 13-key analog piano from only resistors, capacitors, and transistors

Building a fully analog electronic piano using only resistors, capacitors, and transistors, is an insightful experiment in electronic sound generation from first principles. I designed and built a 13-key analog piano in early 2019 using discrete through-hole components on a breadboard powered off a 9V DC battery. The design creates 13 astable multivibrator oscillator circuits, each able to be tuned to a given note frequency in the C5 to C6 range. The outputs of the oscillators are collected (mixed) to create a polyphonic analog audio signal that is amplified and run through an 8-ohm speaker. The device fits into an 11x25cm footprint. Check out how it sounds! (To hear the explanation of how it works, start at the beginning.)


Feb 9th, 2019, Design V1

Continue reading this article…

Electronics in the Junior School – Gateway to Technology

Electronics, computing, and applied mathematics are gateway subjects to modern technology.

For young learners, we believe that electronics provides an ideal entry point. It is practical, with manipulables. It is easy to see cause and effect. With the right equipment and approach, exploring electronics can begin for children as early as 3 years old.

There are many tangible benefits for young learners getting started in electronics:

  1. fine motor skill development,
  2. an intuition for how technological things work at a component level,
  3. the integration of technology into the palette for imagination and creativity,
  4. improved self-confidence,
  5. strengthening a growth mindset,
  6. building resilience,
  7. raising the threshold of frustration,
  8. better dexterity,
  9. stronger focus.

    A three year old wiring his first circuit and the joy at seeing the LED, which he selected, light up!

    Continue reading this article…

Coding for pre-schoolers: a ‘Turtle Logo’ in Forth

*New!* (29 Aug 2020) – Turtle Logo v1.8 (portable) is available! Developer kit with source code included. Suitable from ages 3 years to adult. (970 lines of Forth code).


1. Inspiring the next generation of technology builders.

A challenge facing parents and teachers is how to help children develop ‘builder’ relationships with technology rather than being limited to the passive consumption of content created by others. The consensus on what’s important for older kids and adults is clear: coding. This enables children to participate in the creation of their own technological “micro-worlds” — environments rich in educational potential.[14]

This autumn, spurred by having our own young children (one aged 4 years, the other 16 months), we began an experiment, the result of which is a Turtle Logo program for Windows computers (freely downloadable) that is simple enough to be accessible for children from 3 years and older, while providing an extensible platform that can grow with the child.

The long-term goal is to enable children to express their creativity, artistry, and natural ‘builder’ impulses using coding, computer graphics, and robotics as readily as the previous generation could using paints, brushes, and building blocks.

Turtle Logo - Inspiring the next generation of technology builders.

Turtle Logo – Inspiring the next generation of technology builders.

Continue reading this article…

Stats: 1,089,379 article views since 2010 (Aug '24 update)

Dear Readers:

Welcome to the conversation!  We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics.   Notifications for new long-form articles are through the feeds (you can join below).  We love hearing from you.  Feel free to leave your thoughts in comments, or use the contact information to reach us!

Reading List…

Looking for the best long-form articles on this site? Below is a curated list by the main topics covered.

Mathematics History & Philosophy

  1. What is Mathematics?
  2. Prehistoric Origins of Mathematics
  3. The Mathematics of Uruk & Susa (3500-3000 BCE)
  4. How Algebra Became Abstract: George Peacock & the Birth of Modern Algebra (England, 1830)
  5. The Rise of Mathematical Logic: from Laws of Thoughts to Foundations for Mathematics
  6. Mathematical Finance and The Rise of the Modern Financial Marketplace
  7. A Course in the Philosophy and Foundations of Mathematics
  8. The Development of Mathematics
  9. Catalysts in the Development of Mathematics
  10. Characteristics of Modern Mathematics

Topics in Mathematics: Pure & Applied Mathematics

  1. Fuzzy Classifiers & Quantile Statistics Techniques in Continuous Data Monitoring
  2. LOGIC in a Nutshell: Theory & Applications (including a FORTH simulator and digital circuit design)
  3. Finite Summation of Integer Powers: (Part 1 | Part 2 | Part 3)
  4. The Mathematics of Duelling
  5. A Radar Tracking Approach to Data Mining
  6. Analysis of Visitor Statistics: Data Mining in-the-Small
  7. Why Zero Raised to the Zero Power IS One

Technology: Electronics & Embedded Computing

  1. Electronics in the Junior School - Gateway to Technology
  2. Coding for Pre-Schoolers - A Turtle Logo in Forth
  3. Experimenting with Microcontrollers - an Arduino development kit for under £12
  4. Making Sensors Talk for under £5, and Voice Controlled Hardware
  5. Computer Programming: A brief survey from the 1940s to the present
  6. Forth, Lisp, & Ruby: languages that make it easy to write your own domain specific language (DSL)
  7. Programming Microcontrollers: Low Power, Small Footprints & Fast Prototypes
  8. Building a 13-key pure analog electronic piano.
  9. TinyPhoto: Embedded Graphics and Low-Fat Computing
  10. Computing / Software Toolkits
  11. Assembly Language programming (Part 1 | Part 2 | Part 3)
  12. Bare Bones Programming: The C Language

Technology: Sensors & Intelligent Systems

  1. Knowledge Engineering & the Emerging Technologies of the Next Decade
  2. Sensors and Systems
  3. Unmanned Autonomous Systems & Networks of Sensors
  4. The Advance of Marine Micro-ROVs

Maths Education

  1. Maxima: A Computer Algebra System for Advanced Mathematics & Physics
  2. Teaching Enriched Mathematics, Part 1
  3. Teaching Enriched Mathematics, Part 2: Levelling Student Success Factors
  4. A Course in the Philosophy and Foundations of Mathematics
  5. Logic, Proof, and Professional Communication: five reflections
  6. Good mathematical technique and the case for mathematical insight

Explore…

Timeline