## A Radar Tracking Approach to Data Mining

(Statistics and Data Mining II)

Automated decision problems are frequently encountered in statistical data processing and data mining. An heuristic filter or heuristic classifier typically has a limited set of input data from which to arrive at a set of conclusions and make a decision: REJECT, ACCEPT, or UNDETERMINED. In such cases, pre-processing the input data before applying the heuristic classifier can substantially enhance the performance of the decision system.

In this article, I’ll motivate the use of a radar-tracking algorithm to improve the performance of automated decision making and statistical estimation in data processing. I will illustrate using the website visitation statistics problem.

## Why Zero Raised to the Zero Power IS One

Updated! February 5, 2017

The value of zero raised to the zero power, $(0^0)$, has been discussed since the time of Euler in the 18th century (1700s). There are three reasonable choices: 1,0, or “indeterminate”. Despite consensus amongst mathematicians that the correct answer is one, computing platforms seem to have reached a variety of conclusions: Google, R, Octave, Ruby, and Microsoft Calculator choose 1; Hexelon Max and TI-36 calculator choose 0; and Maxima and Excel throw an error (indeterminate). In this article, I’ll explain why, for discrete mathematics, the correct answer cannot be anything other than 0^0=1, for reasons that go beyond consistency with the Binomial Theorem (Knuth’s argument).

## Finite Summation of Integer Powers (Part 2)

(Discrete Mathematics Techniques II)

Abstract
We solve the general case of the finite-summation-of-integer-powers problem $S_p(N) = \sum_{k=1}^{N} k^p$ for arbitrary $p$, and obtain a $p$-th order recurrence relation that can be used to iteratively obtain the closed form polynomial for $S_p(N)$ for any given $p$. Source code is given for computing these polynomials using Maxima, an open-source (free) symbolic computation platform. (Note: This article generalizes the recurrence relation approach that is motivated and illustrated for small $p$ in Part 1. A direct matrix method for computing the closed form solutions is given in Part 3.)

## Good mathematical technique and the case for mathematical insight

Good mathematical technique can bring the solution to certain mathematical questions within reach. By a proper formulation (one that is both tractable and that generalizes readily) and the use of mechanical techniques, one can often pass from a single insight to the solution of a family of problems, and in some cases, to the solution of the general question itself. … Good mathematical technique has built within it the mathematical insight of the best of previous generations.