3rd ed. Aug 2023 (expanded appendices). 2nd ed. Nov 2019 (revised to include advances in linguistics, genomics, interpretive theory, and Mesopotamian mathematics); 1st ed. (Dec 29, 2009)
Part 1 in Ancient Mathematics series. (Part 2: The Mathematics of Uruk and Susa 3500-3000 BCE, Part 3: Exploring Cuneiform Culture 8500-2500 BCE)
Abstract
How far back in time can we trace mathematical understanding and mathematical practice? When did humans acquire the neurological circuitry for the cognitive and linguistic capabilities on which mathematics depends? Advances in multiple disciplines over the past 30 years have fundamentally changed what we know about our past and about the biological capacity for, and cultural impulses behind, cognitive precision (language, number sense, cultural transmission). Exploring these questions will take us on a journey across archaeology, Assyriology, artifact analysis (close reading theory), anthropology, genomics, linguistics, neurobiology, and animal cognition.
The Anthropology and Archaeology of Conceptual Thought leading to the Birth of Mathematics
Continue reading this article…
4th ed. Jan 2024; 3rd ed. May 2023; 2nd ed. Dec 2009; 1st ed. Sep 2004
“It is not philosophy but active experience in mathematics itself that alone can answer the question: `What is Mathematics?'” – Richard Courant & Herbert Robbins, 1941, What is Mathematics?, Oxford University Press)
“An adequate presentation of any science cannot consist of detailed information alone, however extensive. It must also provide a proper view of the essential nature of the science as a whole.” – Aleksandrov, 1956, Mathematics: Its Content, Methods, and Meaning
‘What is mathematics?’ Much ink has been spilled over this question, as can be seen from the selection of ten respected responses provided in the footnote, with seven book-length answers, and three written in the current millenium. One might well ask, is there anything new that can be said, that should be said? We’ll start by clarifying what a good answer should look like, and then explore the answer proposed.
The rest of the paper follows the structure below:
1. Criteria for a Good Definition of Mathematics
2. Definition 1: covering mathematics up to the end of the 18th century (1790s)
3. Two Perspectives
Mathematics as Dialectic (Lakatos)
Mathematics shaped by its Anthropology (Hoyrup)
4. Definition 2: covering all mathematics, including contemporary mathematics
5. The emergence of contemporary mathematical practice from 1800s onward
6. Three Facets of Mathematics
1. Mathematics as an Empirical Science
2. Mathematics as a Modeling Art
3. Mathematics as an Axiomatic Arrangement of Knowledge
7. Mathematics "from the inside": Mathematicians writing about Mathematics
8. Continue Reading
9. References
Continue reading this article…
This article looks at Propositional Logic, also called Statement Calculus, from a combinatorial and algebraic point of view (Sections 3-6), its implementation in software (Section 7), and its application to digital electronics (Section 10). Historical sections cover the shift in viewpoint from classical logic based on Aristotle’s syllogism to modern symbolic logic (Section 2) and the axiomatization of logic (Section 9). (See logic sourcebook for the original source papers (1830-1881) that drove this shift.)
In Section 7, we implement the grammar of the statement calculus in the Symbolic Logic Simulator (SLS), a program written in 28 lines of Forth code, that allows computer-aided verification of any theorem in Propositional Logic (see Appendix 1 for source code). The program makes it straight-forward to explore non-obvious logical identities, and verify any propositional logic theorem or conjecture, in particular see Appendix 2 for key identities in the statement calculus (duality, algebraic, and canonical identities).
The concept of linguistic adequacy is developed in Section 8 and the NAND Adequacy Theorem is proved showing that NAND can generate all logical operations. A corollary is that any digital logic circuit can be built up entirely using NAND gates, illustrated using the free Digital Works software.
Continue reading this article…
In this article we look at the ideas of George Peacock whose 700-page opus A Treatise on Algebra (1830) transformed classical algebra into its modern form as an abstract symbolic science, free from the physical interpretation of quantity that had previously restricted it.
Continue reading this article…
By Assad Ebrahim, on February 18th, 2020 (946 views) |
Topic: Maths--History
This is Part 3 in the Ancient Mathematics series. (To read earlier parts: Part 1: Prehistoric Origins of Mathematics, Part 2: The Mathematics of Uruk and Susa).
This article explores what the people of Mesopotamia wrote about, counted and produced in the last part of the fourth millenium BCE. It does so by examining the frequency of signs in the proto-cuneiform tablets from the period c.3500-3000 BCE. For those wishing to build up experiential understanding of life in the Neolithic and early Bronze Age near east, this article provides suitable references as well as practical explorations of the economic and productive activities of the people: rope-making from grass, basket-weaving from reads, baking, weaving of cloth from linen, breaking ground, sowing, reaping, making flour, etc.
The first part of the article look closely at the collection of artifacts in each period that are associated with the evolution of writing and mathematics in ancient Mesopotamia, examining noteworthy individual artifacts that showcase a key development.
The study uses the CDLI database of cuneiform documents, and software I’ve written that parse the files in the CDLI database, extracting counts, parsing signs, generating frequency distributions of signs, creating a proto-cuneiform glossary, and assisting in the quantitative analysis of artifacts and semi-automated translation (see CDLI parser software library written in Ruby).
Continue reading this article…
This is Part 2 in the Ancient Mathematics series. (Part 1: The Prehistoric Origins of Mathematics, Part 3: Exploring Cuneiform Culture 8500-2500 BCE)
Summary The written mathematics of ancient Iraq and Iran (Mesopotamia, Khuzistan) developed out of an administrative/bureaucratic program to control the surplus raw and manufactured goods of the settled societies of the late neolithic/early bronze age: grains & grain products, sheep & other herded animals, jugs of dairy fats & beer, rope & textiles. It evolved through a sequence of literary and mathematical innovations, each making more efficient the ability to record quantitative/metrological information and use it for planning and control. Initially, impressed tokens and pictographs were used whose meaning was clear by association. Subsequently, this repertoire was written signs was expanded in a consious effort to provide a standard, all-encompassing collection of signs/symbols (ideographs/logograms) that could represent all aspects of importance in early thought (professions, animals, foods, containers, textiles, etc.). The standard sign lists were spread through scribal schools to produce the scribes that administered the temple economies of the early city-states.
Uruk was the hegemonic centre of this innovation in mathematics and writing, starting from 3500 BCE. The increased administrative control generated economic efficiencies accelerating Uruk’s growth and which supported greater military effectiveness and the ability to dominate neighboring polities and support longer distance trading missions [Adams/2005], [Algaze/2013]. The success of Uruk’s structures had the effect of radiating the new inventions outward throughout the Greater Mesopotamian region (evidence in Aratta/Susa adoption of writing/adminstrative control), even reaching Anatolia (Turkey) in the far north (Uruk expansion phenomenon).
The gains in economic power and increased resilience to subsistence unpredictability conferred by the new planning and control capabilities, set in motion the development of a bureaucratic administrative culture in the southern Mesopotamian city states that, over the next 1000 years would reach its hypertrophic apex in the ambitious Ur III program under King Shulgi to plan, manage, and control all economic/productive assets in his vast empire through mathematics (c.2050 BCE). This required an army of scribes which in turn led to the standardization and systematization of the scribal school institution responsible for producing them.
Two examples of mathematical innovation are from the cattle redistribution center Puzrish-Dagan outside Nippur during the Ur III empire. One shows perfection of the form of tabular accounting (world’s earliest normalized two-dimensional table with rows and columns and sums in both dimensions) [Robson/2003]. The other shows the population growth modeling of a cattle-herd over 10 years with projected economic yields in dairy and cheese, solving, in modern terms, population difference equations in table form (see illustrated explanation of cuneiform tablet TCL 2, no.5499, [Nissen/1993: 97-102])
In this paper, we will look in more detail at mathematical development during the archaic period of writing (3500-3000 BCE) which gave rise to a new literate and quantitative layer in society in the main urban centres of Mesopotamia. Our thesis (which we have seen play out already in Part 1) is that technology (in this case mathematics/writing) and culture (in this case the impulse to plan/control) are inextricably linked. Their development influences the trajectory of the surrounding societies.
Ur III mathematical model projecting annual dairy/cheese yields from a herd of 4 cows and a bull with assumptions on calving rates
Download article (PDF)
Continue reading this article…
By Assad Ebrahim, on January 15th, 2010 (13,522 views) |
Topic: Maths--History, Maths--Philosophy
The development of mathematics has had many encouraging forces: societal, technological, cultural. These have served to accelerate mathematics and have been accelerated in turn, in many cases the pair becoming locked into a mutually beneficial resonance that has dramatically energized both.
In this article, I look at some of the significant catalysts, from the rise of the leisured class in ancient times to the impact of computing in modern times.
Continue reading this article…
By Assad Ebrahim, on January 3rd, 2010 (158,599 views) |
Topic: Maths--History, Maths--Philosophy
The development of mathematics is intimately interwoven with society and culture, influencing the course of history through its applications to science and technology.
But mathematics itself has changed much over its history. Even the mathematics of the early 1800s can now seem quite strange, so great have been the changes in just the past 150 years as it has been reworked in the modern abstract approach. Though advanced mathematics may now appear arcane from the outside looking in, the present state of mathematics is the result of a natural evolution of the subject. And there is much excitement promised ahead with the rise of new mathematics and application areas in subatomic and quantum physics, in the the field of statistical learning (also called artificial intelligence or machine learning), and in numerical computing and simulation.
What follows is the story of mathematics, in a nutshell.
Continue reading this article…
|
Stats: 1,089,379 article views since 2010 (Aug '24 update)
Dear Readers: Welcome to the conversation! We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics. Notifications for new long-form articles are through the feeds (you can join below). We love hearing from you. Feel free to leave your thoughts in comments, or use the contact information to reach us!
|