Breakthrough Science

Breakthrough science has moved here:

Curated Shorts

How to think about engineered solutions?

Rapid prototyping can be an accelerator for hardware or embedded solutions. But for a successful outcome, follow the recommended checklist / task sequence given below, as all of these steps will likely need to be touched upon at some point in the process.
Continue reading this article…

Experimenting with Microcontrollers – an Arduino development kit for under £10

For under £10, you can put together a microcontroller development platform, ready to program directly from your PC over USB using free Arduino software. Once programmed, your microcontroller will run autonomously, untethered from your PC, powered by as small a battery power supply as a single 1.5V AAA or 3V CR2032 coin cell. You can have it interact with its environment using dozens of low-cost sensors and motors. Everything you need to explore the exciting world of embedded systems is available to you, typically for less than a day pass on the London underground.

An Arduino Nano microcontroller development kit for under £13

A homebrew Arduino Nano microcontroller development kit for under £12 (including optional OLED display)

Continue reading this article…

Everything (Desktop Search)

If you haven’t done so already, you may want to start by reading the Preface to the Computing Series: Software as a Force Multiplier, Sections 1-3.

“Everything” you need for ultra-fast desktop search

1. Everything(tm) is an ultra-fast desktop search utility that can scan through hundreds of thousands of files in milliseconds using a pre-built and real-time updated index.

“Everything” brings order to information growing at scale (documents, photographs, source code, spreadsheets, etc.), and tames the problem of proliferating folder trees.

Everything is a fast desktop search utility that can index 1 million files in less than 1 minute, and generate search queries in milliseconds.

Everything is a fast desktop search utility that can index 1 million files in less than 1 minute, and generate search queries in milliseconds.

We’ve all been in the scenario of searching through electronic documents for a document you know you prepared three, maybe four weeks prior… maybe it was longer… and now you can’t remember where you saved it… or in what format: was it a quickly written text file, a word document, a few paragraphs within One Note, on a desktop post-it note, or did you email yourself from your phone?… After trying different Windows searches in various recently used folders and looking through Word, Excel, and PDF files, and trying to remember possible filenames to search for, at some point you prepare mentally for the moment when you will give up the search and attempt to redo the missing work, salvaging as much of it as you can remember.

The general problem of wasted effort locating information we know we have, occurs more often than we’d like to admit. With “Everything“, it can be better.

Continue reading this article…

Building a 13-key analog piano from only resistors, capacitors, and transistors

Building a fully analog electronic piano using only resistors, capacitors, and transistors, is an insightful experiment in electronic sound generation from first principles. I designed and built a 13-key analog piano in early 2019 using discrete through-hole components on a breadboard powered off a 9V DC battery. The design creates 13 astable multivibrator oscillator circuits, each able to be tuned to a given note frequency in the C5 to C6 range. The outputs of the oscillators are collected (mixed) to create a polyphonic analog audio signal that is amplified and run through an 8-ohm speaker. The device fits into an 11x25cm footprint. Check out how it sounds! (To hear the explanation of how it works, start at the beginning.)


Feb 9th, 2019, Design V1

Continue reading this article…

Electronics in the Junior School – Gateway to Technology

Electronics is a gateway subject to modern technology, along with computer programming and applied mathematics. Getting started in electronics is easier than one may imagine and not prohibitively expensive. With the right approach, exploring electronics can begin for children as early as 3 years old. I’ve been play-testing these ideas with my children, Adam (3 yrs & 4 months) and Jasmine (6 yrs & 10 months), and a couple of teenagers (13 and 14 yrs). Read on for the journey plan, and a photo gallery of what we’ve built so far.

Adam having wired his first circuit and seeing his selected blue LED lit!

Continue reading this article…

Coding for pre-schoolers: a ‘Turtle Logo’ in Forth

*New!* (29 Aug 2020) – Turtle Logo v1.8 (portable) is available! Developer kit with source code included. Suitable from ages 3 years to adult. (970 lines of Forth code).


1. Inspiring the next generation of technology builders.

A challenge facing parents and teachers is how to help children develop ‘builder’ relationships with technology rather than being limited to the passive consumption of content created by others. The consensus on what’s important for older kids and adults is clear: coding. This enables children to participate in the creation of their own technological “micro-worlds” — environments rich in educational potential.[14]

This autumn, spurred by having our own young children (one aged 4 years, the other 16 months), we began an experiment, the result of which is a Turtle Logo program for Windows computers (freely downloadable) that is simple enough to be accessible for children from 3 years and older, while providing an extensible platform that can grow with the child.

The long-term goal is to enable children to express their creativity, artistry, and natural ‘builder’ impulses using coding, computer graphics, and robotics as readily as the previous generation could using paints, brushes, and building blocks.

Turtle Logo - Inspiring the next generation of technology builders.

Turtle Logo – Inspiring the next generation of technology builders.

Continue reading this article…

Computing & software as a ‘force-multiplier’ — merged

THIS PAGE HAS MOVED!

The essay has been incorporated into the Software list. You can find it here!


The Advance of Sensor Networks and Autonomous Systems

The past five years have seen the emergence of a growing array of autonomous swimming, flying, and rolling vehicles, each highly sensored and capable of real-time communication with processors external to themselves. Practical designs are now commercially available for each of the four primary areas of our environment: terrestrial, marine (subsea, surface, and amphibian), atmospheric (gravity constrained), and space (orbital and planetary).

A look at a selection of these achievements in networked sensor systems will set the stage to discuss the communications layer of the ubiquitous computing stack.

Continue reading this article…

The Advance of Marine Micro-ROVs

A Versatile Tool for Marine Operations, and a Portable Undersea Platform for Small Sensors

Micro-ROVs (Remotely Operated Vehicles) are becoming increasingly capable even as their size and cost drop, opening up new possibilities for the application of undersea inspection, imaging, and measurement.

In this article, I’ll discuss four reasons why Micro-ROVs should be a routinely used part of a marine and water-side operations toolkit, and review some stand-out choices in the Micro-ROV category.

Continue reading this article…

Stats: 1,072,680 article views since 2010 (May '24 update)

Dear Readers:

Welcome to the conversation!  We publish long-form pieces as well as a curated collection of spotlighted articles covering a broader range of topics.   Notifications for new long-form articles are through the feeds (you can join below).  We love hearing from you.  Feel free to leave your thoughts in comments, or use the contact information to reach us!

Reading List…

Looking for the best long-form articles on this site? Below is a curated list by the main topics covered.

Mathematics-History & Philosophy

  1. What is Mathematics?
  2. Prehistoric Origins of Mathematics
  3. The Mathematics of Uruk & Susa (3500-3000 BCE)
  4. How Algebra Became Abstract: George Peacock & the Birth of Modern Algebra (England, 1830)
  5. The Rise of Mathematical Logic: from Laws of Thoughts to Foundations for Mathematics
  6. Mathematical Finance and The Rise of the Modern Financial Marketplace
  7. A Course in the Philosophy and Foundations of Mathematics
  8. The Development of Mathematics
  9. Catalysts in the Development of Mathematics
  10. Characteristics of Modern Mathematics

Electronic & Software Engineering

  1. Electronics in the Junior School - Gateway to Technology
  2. Coding for Pre-Schoolers - A Turtle Logo in Forth
  3. Experimenting with Microcontrollers - an Arduino development kit for under £12
  4. Making Sensors Talk for under £5, and Voice Controlled Hardware
  5. Computer Programming: A brief survey from the 1940s to the present
  6. Forth, Lisp, & Ruby: languages that make it easy to write your own domain specific language (DSL)
  7. Programming Microcontrollers: Low Power, Small Footprints & Fast Prototypes
  8. Building a 13-key pure analog electronic piano.
  9. TinyPhoto: Embedded Graphics and Low-Fat Computing
  10. Computing / Software Toolkits
  11. Assembly Language programming (Part 1 | Part 2 | Part 3)
  12. Bare Bones Programming: The C Language

Pure & Applied Mathematics

  1. Fuzzy Classifiers & Quantile Statistics Techniques in Continuous Data Monitoring
  2. LOGIC in a Nutshell: Theory & Applications (including a FORTH simulator and digital circuit design)
  3. Finite Summation of Integer Powers: (Part 1 | Part 2 | Part 3)
  4. The Mathematics of Duelling
  5. A Radar Tracking Approach to Data Mining
  6. Analysis of Visitor Statistics: Data Mining in-the-Small
  7. Why Zero Raised to the Zero Power IS One

Technology: Sensors & Intelligent Systems

  1. Knowledge Engineering & the Emerging Technologies of the Next Decade
  2. Sensors and Systems
  3. Unmanned Autonomous Systems & Networks of Sensors
  4. The Advance of Marine Micro-ROVs

Math Education

  1. Teaching Enriched Mathematics, Part 1
  2. Teaching Enriched Mathematics, Part 2: Levelling Student Success Factors
  3. A Course in the Philosophy and Foundations of Mathematics
  4. Logic, Proof, and Professional Communication: five reflections
  5. Good mathematical technique and the case for mathematical insight

Explore…

Timeline